Supervised machine learning methods to identify muscles from MEP traces - a proof of concept design

Objective: Even for an experienced neurophysiologist, it is challenging to look at a single graph of an unlabeled motor evoked potential (MEP) and identify the corresponding muscle. We demonstrate that supervised machine learning (ML) can successfully perform this task and surpass trained neurophysiologists. Methods: Intraoperative MEP data from surgery on 36 patients was included for the classification task with 4 muscles: Extensor digitorum (EXT), abductor pollicis brevis (APB), tibialis anterior (TA) and abductor hallucis (AH).