Monitoring MEPs and SSEPs in neuromuscular scoliosis patients

H.I. Berends^{1,2}, B.J. van Royen^{1,3,4}, A. Stadhouder^{1,3}, A.H. Stam², A.A. Gouw^{2,5}, Amsterdam UMC 1. Department of Orthopedic Surgery and Sports Medicine, 2. Department of Neurology, 3. Amsterdam Movement Sciences, 4. Emma Children's Hospital, 5. Amsterdam Neuroscience

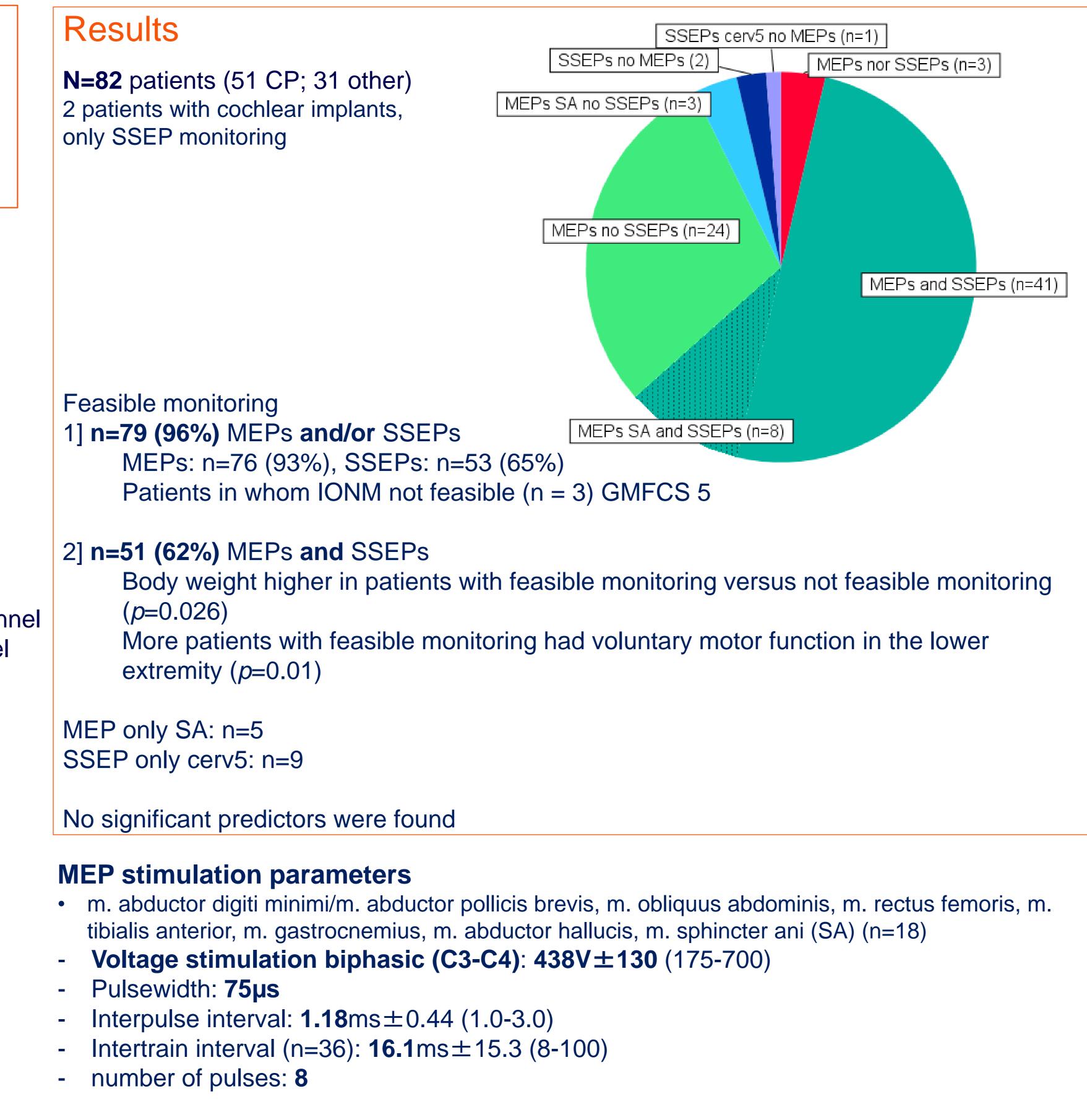
Goals

- To assess and predict feasibility of IONM in neuromuscular scoliosis (NMS) patients
- To summarize stimulation and acquisition parameters during scoliosis surgery in NMS

Introduction

- Intraoperative neuromonitoring (IONM) is advised to reduce the risk of neurological damage during scoliosis surgery.
- Neurological deficits, such as cerebral palsy (CP) can hinder the feasibility of motor evoked potentials (MEPs) and somatosensory evoked potentials (SSEPs).

Methods


- Retrospective cohort study
- Feasible monitoring was defined by: 1] MEPs in \geq 1 leg/sphincter muscle **and/or** SSEPs in \geq 1 channel 2] MEPs in \geq 1 leg/sphincter muscle **and** SSEPs in \geq 1 channel
- Patient characteristics: age, height, weight, voluntary motor function lower extremities, diagnosis, GMFCS
- Stimulation paradigms are described
- Predictors were tested using binary regression analysis

Results

SSEP stimulation parameters

- Lower limbs: CPz-Fz (n=37) / CPc-Fz (n=7) / cerv5-Fz (n=9)
- Stimulation parameters: current: 30.6mA±8.7
- Pulsewidth: $223ms \pm 62.6$
- Frequency: $4.5Hz \pm 0.6$

Table. patients characteristics		
	MEPs and/or SSEPs feasible vs not feasible	MEPs and SSEPs feasible vs Not feasible
Patients (n)	79 (39 female) 3 (2 female)	52 (26 female) 26 (13 female)
Mean age (years)	14.4 ± 3.3 13.7 ± 5.7	14.1 ± 2.9 14.7 ± 4.2
Body height (cm)	151 ± 12.4 153 ± 32	152 ± 13.2 149 ± 12.4
Body weight (kg)	41.1 ± 10.8 34.6 ± 9.9	$41.8 \pm 11.8 *$ 38.3 ± 8.3
Voluntary motor function (yes / no / missing)	47 / 19 / 13 0 / 2 /1	35 / 10 / 7 * 9 / 11 / 6
Diagnosis	CP: n=49; other: n=30 CP: n=2, other: n=1	CP: n=30; other: n=22 CP: n=19; other: n=7
Values are n or mean \pm SD, * $p < 0.05$ according to t-test		

Conclusion

neuromuscular scoliosis patients

Table: patients' characteristics

- In 96% of NMS patients IONM is feasible
- body weight
- include MEP m. sphincter ani

IONM using both MEPs and SSEPs should be considered in **all**

IONM feasibility is associated with voluntary motor function and higher

Recommendations MEP: biphasic stimulation at C3-C4, pulsewidth 75µs,

Recommendations SSEP: include cervical derivation (cerv5)