

THE IMMUNOLOGIC LANDSCAPE OF HRAS MUTANT HEAD AND NECK SQUAMOUS CELL CARCINOMA

¹Oncology Unit, 2nd Department of Internal Medicine, National and Kapodistrian University of Athens, Attikon University Hospital, ²Biomedical Research Foundation Academy of Athens, ³Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, ²Biomedical Research Foundation Academy of Athens, ³Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University Hospital, ²Biomedical Research Foundation Academy of Athens, ³Second Department of Pathology, National and Kapodistrian University Hospital, ²Biomedical Research Foundation Academy of Athens, ³Second Department of Pathology, National and Kapodistrian University Hospital, ²Biomedical Research Foundation Academy of Athens, ³Second Department of Pathology, National and Kapodistrian University Hospital, ²Biomedical Research Foundation Academy of Athens, ³Second Department of Pathology, National and Kapodistrian University Hospital, ²Biomedical Research Foundation Academy of Athens, ³Second Department of Pathology, National and Kapodistrian University Hospital, ²Biomedical Research Foundation Academy of Athens, ³Second Department of Pathology, National and Kapodistrian University Hospital, ³Second Department of Pathology, National and Kapodistrian University Hospital, ³Second Department of Pathology, National Athens, ³Second Depart

INTRODUCTION

- mut) tumors' sensitivity to immunotherapy.
- framework for combinatorial strategies.

METHODS AND MATERIALS

- from The Cancer Genome Atlas (TCGA).
- biopsies was targeted for sequencing.
- 40 with *HRAS* wild-type (WT) HNSCC.
- manually trained algorithm in Qupath software.

CONTACT

P Economopoulou, MD, OhD Attikon Univeroty Hosiptal Email: panagiota.oiko@gmail.com , Gavrielatou N.¹, Kirkasiadou M.¹, Zazas E.¹, Caglar C.¹, Frantzi T.¹, Gkaralea L.¹, Kalfoutzou A.¹, Rouboutsou M.¹, Foukas P.³, Psyrri A.¹

> HRAS mutations define a distinct biologic subset of head and neck squamous cell carcinoma (HNSCC). There is limited data regarding HRAS mutant (HRAS

 \succ In this translational study, we sought to a) analyze the genomic landscape of *HRAS* mut HNSCC to assess the prognostic impact of concurrent mutations in HRAS mut tumors and their potential impact on modulating the T-cell inflamed phenotype, and b) assess the immune microenvironment of HRAS mut tumors by exploring the subpopulations of pre-exhausted and exhausted T cells to provide the conceptual

RESULTS

- > The analysis of TCGA HNSCC mutation and mRNA expression data demonstrated that 6% of HNSCC harbor mutant HRAS. whereas 4.7% of HNSCC overexpress WT *HRAS* (HRAS WT^{OV}group).
- > Transcriptome analysis showed that HRAS mut HNSCCs are infiltrated by immune cells (CD8A, CD8B, CD2) and have higher expression levels of CXCL11, CXCL10, CXCL9, and CCL4 chemokines.
- Moreover, the percentage of HRAS mut samples increased in higher PD-L1 score groups (11% vs. 20% vs. 100% in Tumor Positive Scores (TPS) <1%, 1-49% and \geq 50% respectively, *p*=0.006).

> We analyzed mutational and transcriptome data

> In addition, genomic DNA from baseline tumor

> Our study included 10 patients with HRAS mut and

PD-L1 expression in FFPE tumor samples was assessed using the PD-L1 IHC 22C3 pharmDx assay.

> We characterized subpopulations of exhausted CD8(+) T cells by measuring the expression of T-cell Factor-1 (TCF1) and PD-1 in both the center and the periphery of the tumors using multiplex immunohistochemistry, followed by analysis using a

Figure 1. HRAS alterations in HNSCC

Economopoulou P.¹, Rampias T.², Spathis A.³, Kotsantis I.¹, Kyriazoglou A.¹, Moutafi M. <u>Economopoulou P.¹</u>, Rampias T.², Spathis A.³, Kotsantis I.¹, Moutafi M.

RESULTS

> The analysis of TME showed that HRAS mut tumors have statistically significant higher numbers of total immune cells (5123.17/mm²vs. 3527.93/mm², p=0.002) and a higher percentage of pre-exhausted CD8 (+) PD-1(+) TCF1(+) T Cells in the periphery (384.67/mm2vs. 51.18/mm2, *p*=0.040) than *HRAS* WT tumors.

Figure 3. Bar graph showing that the percentage of pre-exhausted CD8 + T Cells, is elevated in the P of HRAS mut tumors.

DISCUSSION- CONCLUSIONS

- > Our study represents a pioneering effort to evaluate the immune context of HRAS mut HNSCCs.
- > We show for the first time that HRAS mut tumors are characterized by a significantly higher number of total immune cells, pre-exhausted PD-1(+) TCF1(+) T cells, and PD-L1 expression, suggesting a potential sensitivity of these tumors to immunotherapy alone or in combo with tipifarnib

REFERENCES

Funding: Kura Oncology, Inc., supported the work.

Kareff SA, Trabolsi A, Krause HB, et al. The Genomic, Transcriptomic, and Immunologic Landscape of HRAS Mutations in Solid Tumors. Cancers. 2024;16(8).

Coleman N, Marcelo KL, Hopkins JF, et al. HRAS Mutations Define a Distinct Subgroup in Head and Neck Squamous JCO Cell Carcinoma. precision oncology. 2023;7:e2200211.