AA015 - Predictive models of melanoma metastasis based on dermatoscopy. An international human reader study

K Lallas,¹ H Kittler,² P Tschandl,² K Liopyris,³ T Amaral,⁴ G Argenziano,⁵ R Bakos,⁶ R Braun,⁷ H Cabo,⁸ E Dika,⁹ J Malvehy,¹⁰ A Marghoob,¹¹ S Puig,¹⁰ A Scope,¹² W Stolz,¹³ A Minagawa,¹⁴ MM Costa,⁶ M Agozzino,¹⁵ D Shalmon,¹⁶ G Briatico,⁵ EC Sabban,⁸ V Mar,¹⁷ C Mahon,¹⁸ N Muller,¹⁸ A Lallas²³ I Zalaudek,¹⁵ A Lallas²³ I Zalaudek,¹⁵ A Lallas²³

¹Aristotle University of Thessaloniki, Department of Dermatology, Vienna, Austria, ³University of Athens, Bepartment of Dermatology, Nepartment of Dermatology, Vienna, Austria, ³University of Tübingen, Germany, ⁵University of Campania L. Vanvitelli, Dermatology, Porto Alegre, Brazil, ⁷Universidad de Buenos Aires, Buenos Aires, Rentina, ⁹IRCCS Azienda Ospedaliero-Universitaria di Bologna, Policlinico S. Orsola-Malpighi, Oncologic Dermatology Unit, Bologna, Italy, ¹⁰Hospital Clínic Barcelona, New York, United States of America, ¹²Chaim Sheba Medical Screening Institute, Tel Aviv, Israel, ¹³Allergology and Environmental Medicine, Clinic Thalkrichner Strasse, Department of Dermatology, Trieste, Italy, ¹⁶Chaim Sheba Medical University of Trieste, Department of Dermatology, Trieste, Italy, ¹⁶Chaim Sheba Medical University of Trieste, Italy, ¹⁷Nedical University of Trieste, Italy, ¹⁸Nedical University of Trieste, Italy, ¹⁸Nedical University, Italy, ¹⁹Nedical University, Italy, ¹⁹Nedical University, ¹⁹Nedical Hospital, Melbourne, Australia, ¹⁸Dermatology, Research Centre, The University of Queensland, Brisbane, Australia, ¹⁹Centre Hospitalier Lyon Sud, Department of Dermatology, Lyon, France, ²⁰IRCCS Azienda Ospedaliero-University, Second Department of Dermatology, School of Medicine, Faculty of Health Sciences, Thessaloniki, Greece, ²³Aristotle University, First Department of Dermatology, School of Medicine, Faculty of Health Sciences, Thessaloniki, Greece

Introduction

- Current melanoma prognosis tools have limited clinical utility, highlighting the need for more effective biomarkers¹.
- Dermatoscopy is a non-invasive examination that correlates with established prognostic markers obtained through invasive procedures, such as Breslow thickness and ulceration².
- However, the evidence directly linking specific dermatoscopic structures to melanoma spread at locoregional or distant sites remains limited.

Methodology

Setting and study design – inclusion criteria

- Patients with cutaneous melanoma with pathologic stage IB and above (AJCC 8th edition)
- Available dermatoscopic image of the primary tumor
- Sufficient follow-up time for metastasis development (minimum follow-up of 36 months for non-metastatic lesions).

Procedures

Procedures of the study and the workflow are presented in Figure 1.

Outcomes

- **Primary**: to investigate the association between dermatoscopic features of primary melanoma and metastasis of any type (either regional or distant metastatic spread).
- **Secondary**: to develop 3 models and to compare their accuracy of metastasis prediction:
- 1) Model 1: a model based on dermatoscopy
- 2) Model 2: a model incorporating Breslow thickness and ulceration
- 3) Model 3: a combined model integrating both dermatoscopic and histologic predictors Also, to compare the diagnostic accuracy of all three models in predicting recurrence-free survival (RFS) and distant metastasis-free survival (DMFS) in early-stage tumors at diagnosis.

Statistical analysis:

- Risk of metastasis and RFS/DMFS was assessed by multivariable logistic and Cox regression analysis, respectively.
- Dataset split into training and test sets, stratified by TNM stage, age, and sex was conducted. A 5-fold cross-validation approach was applied to the training set, followed by independent validation in the test set.
- Accuracy of the models was expressed as the Area under Curve (AUC) and DeLong's method was used to compared AUC values.

Results

Baseline characteristics

- 524 patients with cutaneous melanoma were included.
- Metastasis occurred in 222 patients (42.4%), either at the time of initial diagnosis or during the follow-up period (median follow-up 50 months (range: 1-228 months).

Reader analysis

- 776 dermatoscopic images of primary melanomas assessed by 30 readers [median of 104 images (range: 21–208) per reader].
- Interrater agreement ranged from *fair* (color assessment) to *moderate* (pigmentation grade, ulceration, and vascular structures).

Dermatoscopic predictors of metastasis (Multivariable analysis) (Table)

- **Negative predictors**: heavy pigmentation, regression structures
- **Positive predictors**: extensive ulceration, blue-white veil

Comparative analysis of the accuracy of models in predicting metastasis

- Model 1: AUC 0.798 (95%CI: 0.754 0.841)
- Model 2: AUC 0.768 (95%CI: 0.721 0.816)
- Model 3: AUC 0.826 (95%CI: 0.786 0.866)
- These patterns persisted during independent validation in the test set.

RFS - DMFS in early-stage melanoma

- Model 1: extensive ulceration and blue-white veil (reduced RFS), extensive regression (increased RFS).
- Model 2: only Breslow thickness deemed a significant predictor,
- Model 3: Breslow thickness and dermatoscopic ulceration (reduced RFS).

Accuracy for predicting RFS and DMFS (Figure 2,3)

Training set: similar AUC values for all three models in RFS and DMFS. **Test set**: Model 3 showed a numerically higher AUC compared to Models 1 and 2.

Table: Multivariable analysis for the prediction of metastasis based on dermatoscopy (N=524)

	Model 1		Model 2		Model 3	
	OR	95%CI	OR	95%CI	OR	95%CI
Breslow thickness	-	-	1.37	1.23 – 1.52	1.23	1.11 – 1.35
Ulceration	-	-	2.94	1.90 - 4.56	2.30	1.37 - 3.83
Pigmentation						
Absent	Ref.				Ref	
2	.5 0.89	0.38 - 2.06	-	-	1.03	0.43 - 2.49
5	0 0.42	0.17 - 1.01	-	-	0.54	0.21 - 1.37
7	0.12	0.05 - 0.30	-	-	0.20	0.08 - 0.51
10	0 0.07	0.03 - 0.15	-	-	0.10	0.04 - 0.25
Dermatoscopic Ulceration						
Absent	Ref.		-	-	Ref.	
1-49	1.56	0.95 - 2.56	-	-	1.15	0.67 – 1.95
>50	3.84	1.79 - 8.23	-	-	1.67	0.72 - 3.87
Regression structures						
Absent	Ref.		-	-	Ref.	
1-49	0.81	0.48 - 1.35	-	-	0.87	0.51149
>50	0.41	0.19 - 0.87	-	-	0.35	0.15 - 0.80
Blue – white ve	il 6.10	3.65 - 10.17	-	-	5.46	3.20 - 9.33

Figure 3: a) 1.1mm Breslow non-metastatic (heavy pigmentation b) 1.1mm Breslow metastatic with blue-white veil

References

1. Amaral T, et al. Identification of stage I/II melanoma patients at high risk for recurrence using a model combining clinicopathologic factors with gene expression profiling (CP-GEP). Eur J Cancer. 2023 2. Filipović N. et al., Dermoscopic Features as Predictors of BRAF Mutational Status and Sentinel Lymph Node Positivity in Primary Cutaneous Melanoma. Dermatol Pract Concept. 2021

Contact info

Konstantinos Lallas, <u>koplallas@gmail.com</u>, @LallasKon